A New Genus and New Combinations in Australian Villarsia (Menyanthaceae)

Nicholas P. Tippery and Donald H. Les

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, U.S.A. nicholas.tippery@uconn.edu

Key words: Australia, Liparophyllum, Menyanthaceae, Ornduffia, Villarsia.

Menyanthaceae are a morphologically diverse family of aquatic and wetland plants in the order Asterales, consisting of 60 to 70 species that are distributed worldwide (Tippery et al., 2008). Two of the five genera, Menyanthes L. and Nymphoides G. Gilg (= Fauria Franchet), are monotypic and restricted to the Northern Hemisphere. Liparophyllum Hooker f. (also monotypic) and Villarsia Ventenat (18 species) are found only in the Southern Hemisphere, and Nymphoides Séguier (40 to 50 species) is cosmopolitan in distribution.

Tournefort (1700) had recognized two genera (Menyanthes and Nymphoides) that Limnaeus (1753) combined under Menyanthes to include the emergent wetland species M. trifoliata L. and two floating-leaved species that currently are circumscribed within Nymphoides: N. indica (L.) Kuntze and N. pelata (S. G. Melin) Kuntze. Séguier (1754) validly published Nymphoides subsequently; however, the later synonym Limnanthemum S. G. Melin (1769) remained the accepted genus name for over 100 years (Grisebach, 1845; Mueller, 1875; Bentham & Hooker, 1876). Ventenat (1803) later segregated another genus, Villarsia, to accommodate the distinct South African species V. capensis (Houttuyn) Merrill.

Over the next century, many species were transferred between Limnanthemum and Villarsia, particularly in Australia, where taxa with either floating-leaved or emergent habit occur. Menyanthaceae species in Australia initially were designated under Villarsia (Brown, 1810; Don, 1837; Endlicher et al., 1837; Lehmann, 1845), although some were included under Menyanthes (Sims, 1807, 1810) or the gentianaceous genus Swezeyia L. (Labillardière, 1804—1805).

In a comprehensive treatment of Menyanthaceae, Grisebach (1845) listed species of both Limnanthemum and Villarsia in Australia and provided morphological characters to distinguish the genera, including epipetalous glands, capsule dehiscence, floating leaves, and inflorescence architecture. However, Grisebach recognized only two species of Menyanthaceae in Australia, L. geminatum (R. Brown) Grisebach (= Nymphoides geminata (R. Brown) Kuntze) and V. parnasisia (Labillardière) R. Brown. Many additional Australian species were designated subsequently by Mueller, under both Limnanthemum (Mueller, 1854, 1858) and Villarsia (Mueller, 1860, 1865, 1868). After noting that few characters could distinguish the genera, Mueller eventually transferred every menyanthaceous species in Australia to Limnanthemum (Mueller, 1875), including Liparophyllum gunnii Hooker f., an anomalous species for which Hooker (1847) had established a separate genus.

Other authors, however, maintained the independence of Liparophyllum and established the boundary between Limnanthemum and Villarsia out of which current generic circumscriptions developed (Bentham & Mueller, 1869; Bentham & Hooker, 1876). The few characters that were used to distinguish between Limnanthemum and Villarsia included capsule dehiscence and inflorescence morphology, and Liparophyllum was differentiated by linear leaves and a lack of carpellary glands. Later, Kuntze (1891) further codified the assignment of species to genera when he transferred nearly all currently recognized species

in Australia to either *Nymphoides* or *Renealmia* Houyttyn (a *Villasaria* synonym and later homonym of *Renealmia* L. f.). Recent authors have maintained the separation of *Nymphoides* and *Villasaria* on morphological grounds that include vegetative habit and inflorescence architecture, and have supported the independence of *Liparophyllum*, which is unique among Menyanthaceae in having solitary flowers and linear leaves (Aston, 1973; Chuang & Ornduff, 1992; Cook, 1996).

Divisions among Menyanthaceae genera have been upheld in part because of their relatively discrete geographic ranges. Although *Nymphoides* species are found worldwide and *Villasaria* are relatively abundant in the Southern Hemisphere, there are few areas where both genera co-occur. Species of *Nymphoides* are absent from southwestern Australia, where over half of *Villasaria* species are endemic (Aston, 1973). In addition, *Menyanthes* and *Nephyrophyllum* are restricted to the Northern Hemisphere, which precludes any overlap in range with the Southern Hemisphere genera *Liparophyllum* and *Villasaria* (Cook, 1996).

Despite the general geographic and morphological distinctiveness of Menyanthaceae genera, several species of different genera are remarkably similar in their floral and seed morphology, which have often been considered as diagnostic (Grisebach, 1845; Aston, 1969; Chuang & Ornduff, 1992). Flowers in *Menyanthes* are yellow or white (rarely tinged with purple) and have either a dense covering of hair, e.g., *Menyanthes trifoliata*, *Nymphoides indica*, *Villasaria submersa* Aston, or lateral petal wings, e.g., *Nephyrophyllum crista-galli* (Menzies ex Hooker) Gilg, *Nymphoides cristata* (Roxburgh) Kuntze, *Villasaria capensis* (Tippery et al., 2008). Large seeds with smooth, elongate epidermal cells distinguish *Menyanthes* and *Nepphyrophyllum* from the other genera, which have smooth to tuberculate seed surfaces that may be ornamented with trichomes, e.g., *Nymphoides peltata*, *Villasaria exaltata* (Solander ex Sims) G. Don, or a nutritive caruncle, e.g., *Nymphoides subacuta* Aston, *Villasaria latifolia* Bentham (Chuang & Ornduff, 1992). Although the distinctiveness of *Menyanthes* and *Nephyrophyllum* from the remainder of Menyanthaceae has been confirmed repeatedly (e.g., Nilsson, 1973; Chuang & Ornduff, 1992), morphological boundaries among the other genera have been obscured by a number of overlapping character states.

Phylogenetic analyses of the Asterales, conducted using both morphological and molecular data, have consistently resolved Menyanthaceae as monophyletic, within which *Menyanthes* and *Nephyrophyllum* are the sister clade to the remainder of the family (Olmstead et al., 2000; Soltis et al., 2000; Lundberg & Bremer, 2003). An analysis of Menyanthaceae taxa using only morphological data (including pollen, seed, and flavonoid data) resolved the floating-leaved genus *Nymphoides* as monophyletic, except for *N. exigua* (F. Mueller) Kuntze, which lacks floating leaves (Tippery et al., 2008). In the same study, *Villasaria* resolved as a paraphyletic grade toward *Nymphoides*, and *Liparophyllum* was unresolved as either the sister taxon of *Nymphoides* or a lineage within the *Villasaria* grade. Phylogenetic analysis of morphological characters thus indicated that although *Nymphoides* is monophyletic, *Villasaria* does not comprise a morphologically coherent group (Tippery et al., 2008).

We have conducted an updated phylogenetic analysis of combined nucleotide (nuclear ribosomal ITS [nrITS], 18S, 25S, and trnK introns) and structural (encoded matK rRNAK indels and ITS secondary structure) molecular data, using the methods outlined in Tippery and Les (2008) and Tippery et al. (2008). In addition to previously reported sequences (Tippery et al., 2008), we obtained new molecular data for one *Villasaria* specimen from South Africa: *V. goldblattiana* Ornduff (Rebelo 2008113001, NBG), and two specimens from Western Australia: *V. submersa* (Horton & Crawford 1845, PERTH) and *V. violifolia* F. Mueller (Ornduff 9342, UC; GenBank accession numbers EU342366–EU342370, FJ546980–FJ546982). The resulting phylogeny (Fig. 1) produced a congruent topology but showed better-resolved interspecific relationships than the tree generated strictly from morphological data (Tippery et al., 2008). *Nymphoides* was strongly supported as monophyletic, whereas *Villasaria* resolved as three separate clades, one of which also contained *Liparophyllum* (Fig. 1). The two larger *Villasaria* clades consisted entirely of Australian taxa, and the other clade contained only the three South African species. Each of the Australian clades included taxa from both the eastern and western floristic regions of that continent (Tahiti, 1986). The phylogeny depicted here (Fig. 1) represents a complete sampling of *Villasaria* species worldwide. It should be noted that separate analyses have resolved another species, *V. cambodiensis* Hance from Southeast Asia, within *Nymphoides*, where we recommend its transfer (Tippery et al., 2010).

Although the clades of *Villasaria* that were resolved in the combined data analysis have never been suggested on the basis of morphology alone, several morphological characters nonetheless support them as separate, internally cohesive groups. Species in the clade that includes the anomalous, floating-leaved species *V. submersa* are united by their remarkably similar seeds that are ellipsoidal with a subterminal hilar (Chuang & Ornduff, 1992). Seeds of most
species in the clade are smooth, although some taxa (e.g., V. albiflora F. Mueller, V. calthifolia F. Mueller) have seeds that are densely covered with acuminate trichomes. In addition, species in the clade all have substantially more ovules per placenta than other Villarsia species (Tippery et al., 2008). The South African species, which form a second clade, are characterized by the most deeply fimbriate petal margins and the fewest seeds per capsule of any Villarsia (Ornduff, 2001; Tippery et al., 2008).

The third clade resolved by the combined data analysis is quite heterogeneous taxonomically and consists of species with varied growth habit, inflorescence architecture, and seed morphology (i.e., Liparophyllum gunnii, Nymphoides exigua, several Villarsia species). Nonetheless, subsets of the taxa within this clade share a number of distinctive traits that are found nowhere else in Menyanthaceae. Among the traits are inflorescences that are fewflowered (L. gunnii, N. exigua, V. violifolia) or congested (V. capitata Nees ex Lehmann, V. congestiflora F. Mueller) and various distinguishing seed features that include sparse trichomes (V. exaltata, V. lasiosperma F. Mueller), a smooth testa with indistinct epidermal cells (N. exigua, V. capitata, V. latifolia, V. violifolia), or a nutritive caruncle (V. congestiflora, V. exaltata, V. latifolia, V. violifolia). None of these features occurs in the other Villarsia clades (Aston, 1969; Chuang & Ornduff, 1992; Tippery et al., 2008).

Furthermore, all taxa in this otherwise diverse clade are distinct from other Villarsia in having between five and 10 ovules per placenta (Tippery et al., 2008).

Analyses of molecular data clearly indicate that Villarsia is paraphyletic as currently circumscribed (Fig. 1; Tippery et al., 2008). Consequently, in order to recognize groups that are meaningful phylogenetically, it will be necessary to revise the current taxonomy to reflect monophyletic genera. This objective can be achieved either by expanding Nymphoides to include all of Villarsia and Liparophyllum, or by subdividing Villarsia among the three clades that resolve in phylogenetic analyses (Fig. 1).

Under the former scenario, the defining morphological features of Nymphoides, namely floating leaves that support a lax inflorescence, would no longer be diagnostic for the genus. In addition, the inclusion of morphologically diverse species under Nymphoides could precipitate a concomitant condensation of Menyanthes and Nephrophyllum into a single genus so that Menyanthaceae genera would remain equivalently diverse. Alternatively, the latter scenario of subdividing Villarsia would preserve the distinctness of Nymphoides as well as provide unifying morphological traits for the separate Villarsia clades. Under neither scenario would the genus name Villarsia apply to any taxon in Australia, because the type species V. capensis belongs to the isolated South African clade (Fig. 1). In our opinion, optimal clarity would be achieved by retaining Nymphoides as currently circumscribed (except for N. exigua), while subdividing Villarsia among the clades that were identified by the molecular and morphological data analyses.

Here we revise the nomenclature for species that formerly belonged to Villarsia. The genus name remains associated with V. capensis and the other two South African species, V. goldblattiana and V. manningiana Ornduff. For the morphologically diverse group that includes Liparophyllum gunnii, Nymphoides exigua, and several Villarsia species, the genus Liparophyllum is expanded to include all species resolving within the clade. Lastly, we establish a new genus to accommodate the third group of Villarsia species, which is separated from other taxa in the phylogenetic analysis by a well-defined, strongly supported branch (Fig. 1; Tippery et al., 2008). The appropriate taxonomic combinations, including emended descriptions of the genera Liparophyllum and Villarsia, are provided below.

TAXONOMIC TREATMENT

Aquatic or wetland annual or perennial herbs. **Radical leaves** erect, with sheathing bases; sessile and linear (Liparophyllum gunnii) or petiolate with ovate or elliptoid laminae, margins entire to crenate-dentate. **Inflorescence** paniculate; flowers 1 to 3 per node or congested into dense, sessile or subsessile capitula (*L. capitatum* (Nees ex Lehm) Tippery & Les, *L. congestiflorum* (F. Mueller) Tippery & Les), or the whole inflorescence consisting of 1 to 5 flowers (*L. exiguum* (F. Mueller) Tippery & Les, *L. gunnii,* *L. violifolium* (F. Mueller) Tippery & Les). **Calyx** persistent, divided into 5 lobes; **corolla** yellow or white, gamopetalous, 5-lobed, rotate, throat fimbriate, margins entire or serrulate; **stamens** 5, alternate with corolla lobes, inserted on the corolla tube at the junction of the lobes; **anthers** 2-celled, sagittate, intorse; **ovary** unilocular with 2 parietal placentae; **base** surrounded by 5 glands (absent in *L. gunnii*); **style** solitary with 2 stigmas; **ovules** 5 to 10 per placenta. **Capsule** dehiscent into 4 valves, adnate to calyx at the base only (*L. gunnii, L. lasiospermum* (F. Mueller) Tippery & Les) or for more than 1/4 of length, of equal length or longer than the calyx; **seeds** 0.7-3 mm diam., orbicular or ellipsoid, smooth or sparsely covered with trichomes (< 1 trichome per
epidermal cell; *L. exaltatum* (Solander ex Sims) Tippery & Les, *L. laxiospernum*, hilum terminal (angle between major axis and hilum with vertex at seed center < 30°; angle approaches 30° in *L. exaltatum* and *L. latifolium*), caruncle present (*L. congestiflorum, L. exaltatum, L. latifolium, L. vialisfolium* (Bentham) Tippery & Les) or lacking.

Typification. Duplicates of *Preiss 1956* are lodged (Stafleu & Cowan, 1983); indeed, the label of their specimen has the locality “Near Perth” written by Oldfield, with another label indicating “in water,” Oct. 1867” (MEL 16493); “Heath swamps north of Albany, Oct. 67” (MEL 16494). We have selected the lectotype, which is the only one whose original label (written by Oldfield) matches the published text, and furthermore it represents the most morphologically complete specimen of the three.

Typification. In the original description of *Villarsia congestiflora*, Mueller (1868) designated two specimens, both collected by Oldfield: “Ad fluvios Swan-River et Murchison-River. Oldf.” Three Oldfield specimens annotated by Mueller reside at MEL. Two of these (MEL 872 and 873) give only the locality “Near Perth” written by Oldfield, with another label on which Mueller wrote “Swan River.” The third specimen (MEL 874), which we have selected as the

Typification. Mueller (1868) listed several of his own collections in the description of *Villarsia laxiosperma*: “In paludibus aqua pura repletis prope urbem Albany, ad bases montium Willyung et montes Porongurup versus. F.M.” Three specimens at MEL were interpreted by Aston (1969) to represent syntypes, although curiously none of their labels matches the published text exactly: “Forest swamps north of Albany, Oct. 1867,” with an apparently later label “Swamps at King George’s Sound, Oct. 67” (MEL 875); “Swamps in the rear of Mt. Melville, Oct. 67,” two packets apparently containing seeds, with a later label “Swamps at King George’s Sound (fresh water), Oct. 67” (MEL 16493); “Heath swamps north of Albany, Oct. 1867,” with the same text reproduced on a later label (MEL 16494). We have selected the first of these (MEL 875) to be the lectotype, because it is the most morphologically complete specimen and
its locality description most closely matches the text of the original publication.

Typification. Mueller (1868) listed several localities and collectors in the original description of Villarsia violifolia: "Ad fluvis Tweed et Don’s River; Oldf. Maxw. Prope urbern Hamden, Clarke." Three specimens at MEL, clarified by Aston (1969), conform to the description: "S. W. Austr." collected by Clarke (label in Mueller’s hand; MEL 16489); "Pits, matted, fl. yellow, Tweed R. W. Aust." collected by Oldfield (MEL 16490); "Don River, S. W. Aust." collected by Maxwell (labels written by Mueller; MEL 16491 and 16492). Of these, the most complete specimen is the collection by Maxwell, specifically MEL 16491, which we designate as the lectotype.

Genus folis simplicibus, inflorescentia diffusa paniculataque, lobo corollino quoque alam medianam carenti, capsula fundo solum ad calycem adnata, seminibus non carunculatis Villarsiae Ventenat similis, sed ab eo marginibus loborum corollinorum integris serratulatis, ovulis ad quamque placentam plus quam 10, seminibus ellipticis hilo subterminali differt.

Aquatic or wetland perennial herbs. Radical leaves erect or floating, petiolate, with sheathing bases; laminae simple, ovate or elliptoid, margins entire to crenate-dentate. Inflorescence paniculate; flowers 1 to 3 per node. Calyx persistent, divided into 5 lobes; corolla yellow or white, gamopetalous, 5-lobed, rotate, throat fimbriate, margins entire or serrate; stamens 5, alternate with corolla lobes, inserted on the corolla tube at the junction of the lobes; anthers 2-celled, sagittate, introrse; ovary unilocular with 2 parietal placenta; base surrounded by 5 glands; style solitary with 2 stigmas; ovules 11 or more per placenta. Capsule dehiscing into 4 valves, adnate to calyx only at the base; seeds 0.5–1.9 mm diam., ellipsoid, smooth or densely covered with trichomes (one per epidermal cell; O. albiflora (F. Mueller) Tippery & Les, O. calthifolia (F. Mueller) Tippery & Les, O. marchanti (Ornduff) Tippery & Les, O. umbricola var. beagleholesi (Aston) Tippery & Les), hilum subterminal (angle between major axis and hilum with vertex at seed center > 30°), without a conspicuous caruncle.

Etymology. We have chosen the generic name Ornduffia to honor the late Robert Ornduff (1932–2000), who contributed immensely to the study of reproductive system ecology and evolution in Menyanthaceae, and Villarsia in particular.

Typification. Mueller (1860) indicated two collections in the description of Villarsia albiflora: "In stagnis propius oppida Perth et Hampden, Clarke et Oldfield." Aston (1969) located two corresponding Oldfield specimens at MEL: "Fl. white, Hampden, W. A." (MEL 16430) and "Perth, W. Aust." (MEL 16447). We designate the latter specimen (MEL 16447), which has more leaves and flowers, as the lectotype.

Typification. The original description of Villarsia calthifolia (Mueller, 1868) listed the locality "in rivulis et in summatis tuberis montium Porongorup. F. M." Aston (1969) identified three Mueller specimens that he considered syntypes: "Porongorup" (MEL 16480); "Summit of the Porongorup. Cor. yellow. Oct. 67" (MEL 16481); and "Porongorup" (NSW 90574). None of the specimens

Aquatic or wetland perennial herbs. Radical leaves erect, with sheathing bases; petiolate with ovate or ellipsoid laminae, margins entire to crenate-dentate. Inflorescence paniculate; flowers 1 to 3 per node. Calyx persistent, divided into 5 lobes; corolla yellow, gamopetalous, 5-lobed, rotate, throat fimbriate, margins deeply fimbriate; stamens 5, alternate with corolla lobes, inserted on the corolla tube at the junction of the lobes; anthers 2-celled, sagittate, introrse; ovary unilocular with 2 parietal placenta; base surrounded by 5 glands; style solitary with 2 stigmas; ovoid 1 to 4 per placenta. Capsule dehiscent into 4 valves, adnate to calyx only at the base; of equal length or shorter than the calyx; seeds 1.5–2.5 mm diam., orbicular, smooth or with bulliform protuberances, hilum terminal (angle between major axis and hilum with vertex at seed center > 30°), without a conspicuous caruncle.

Key to Genera of Menyanthaceae Worldwide

1a. Leaves trifoliolate; inflorescence an erect raceme with > 10 flowers. ... *Menyanthes*

1b. Leaves simple; inflorescence lax, or if erect, then capitulate, paniculate, or consisting of < 5 flowers. . . 2

2a. Leaves erect, their margins distinctly crenate; pollen grains subprolate to prolate; seeds with distinct, narrowly elongate epidermal cells, their surface smooth. *Nephrorhynclium*

2b. Leaves floating, or if erect then margins entire, dentate, or indistinctly crenate; pollen grains peroblate to suboblate; seeds with indistinct or orbicular epidermal cells, their surface smooth, roughened, tuberculate, or possessing trichomes . . . 3

3a. Plants submerged with floating leaves (emergent in mudflat forms or when crowded); inflorescence lax, the flowers in pairs or umbellate, supported by 1 or more floating leaves, or erect and paniculate with > 10 flowers occurring in pairs *Nymphoides*

3b. Plants submersed (*O. submersa*) or emergent, with erect and/or floating leaves; inflorescence erect or lax; if erect, then either capitulate, paniculate with flowers arising singly (rarely paired), or consisting of ≤ 5 flowers; if lax, then never supported by a floating leaf (*O. submersa*) 4

4a. Corolla lobe margins fimbriate; each placenta with 1 to 4 ovules; seeds orbicular, > 1.5 mm diam. *Villarsia*

4b. Corolla lobe margins entire or serrulate; each placenta with ≥ 5 ovules; seeds ellipsoidal, or < 1.4 mm diam. if orbicular 5

5a. Each placenta with 5 to 10 ovules; inflorescence capitate, paniculate, or reduced to ≤ 5 flowers; seeds lacking trichomes on some or all epidermal cells; if trichomes absent, then either margins of
epidermal cells inconspicuous (under 100× magnification) or seed caruncle present. ... *Liparophyllum*

5b. Each placenta with ≥11 ovules; inflorescence always paniculate with >10 flowers; seeds bearing a trichome on each epidermal cell or, if trichomes absent, then margins of epidermal cells conspicuous; seed caruncle absent. ... *Ornduffia*

Acknowledgments. The authors are indebted to the directors and staff of the following herbaria for providing access to specimens and type material: A, B, BM, BRI, CAL, CONN, FI, G, GH, GOET, K, LD, MEL, MO, NSW, NT, NY, PERTH, PRE, S, STR, UC, US, W, in particular Arne Anderberg (S), Peter Audifred (L), Frances Crawford (K), Andrew Duran (UC), Mia Ehn (S), Holly Forbes (UC), Patrik Fröden (LD), Laurent Gautier (G), Jochen Heinrichs (GOET), Michel Hoff (STR), Nimal Karunajeewa (MEL), Karina Knight (PERTH), Egildo Luceioli (FI), Pina Milhe (MEL), John Strother (UC), Christine Taylor (BM), Kevin Thiele (PERTH), Roy Vicker (BM), Ernst Vitdek (W), Robert Vogt (B), and Håkan Wittzell (LD). We also thank Don Padgett for his contributions to understanding phylogenetic relationships in Menyanthaceae, Tony Rebele for collecting live material, Victoria C. Hollowell for helpful comments on the manuscript, and Helen Aston and Surrey Jacobs for their valuable insights on the Australian taxa.

Literature Cited

Ventenat, É. P. 1803. Choix de Plantes... *Crapelet*, Paris.